

LitterNET:

Litter Detection Within Heart & Soul Park

Emily Diaz-Silva and Grace Gao

Background

Current literature on litter detection focuses on (1):

- → Neural network models
- → PlastOPol Dataset
- → Static images

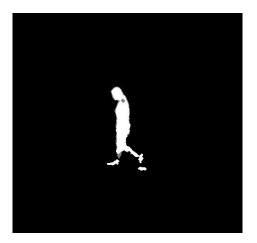
Literature on vandalism detection focuses on (2):

- → Static changes
- → Pre-defined areas
- → Object segmentation

Annotated images of plastic bottles from the PlastOPol Dataset

Project Goals

Optimizing real-time detection


Smaller and more targeted ROIs have greater confidence when inputted into the model

Homography mapping

Top-down map of Heart and Soul Park, marked with simulated red dots for litter

Methods

Binary image of moving object in frame

Left contour defined as moving object

Input Video
Real-time video footage of a person littering

Background Subtraction
Extract foreground objects
from background model

Object Presence
Track contours that enter
and leave the scene

Methods

Background Update
Compare scene change to
initial background model

Static Change Detection
Detect ROIs from static
background changes

CNN Model

Detect whether the ROI actually contains litter

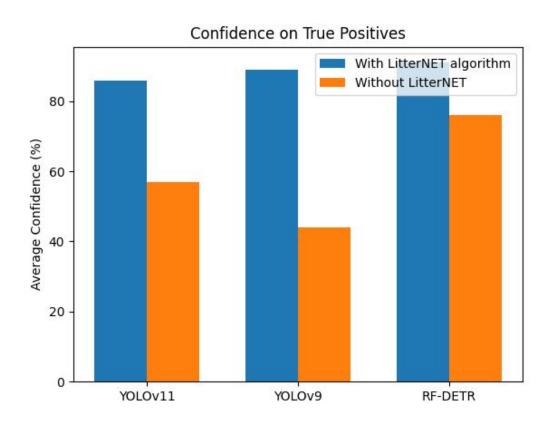
Mapping with OpenCV Homography

Four Features /
Landmarks
Pick 4 features from map
& camera perspective

Pixel Coordinates
Save the pixel coordinates
of the 4 features

Homography Matrix
Using pixel coordinates,
calculate the homography
matrix

Homography matrix computed:
[[-1.57789336e-02 -9.70606616e-01 2.25005379e+02]
[3.35622167e-02 -1.40541354e+00 2.77422312e+02]
[1.58374654e-05 -5.01985036e-03 1.00000000e+00]


Mapping

Our GUI

- → Built with Tkinter
- Supports easy access to a system of cameras
 - Add cameras
 - Open cameras
- User-adjustable homography mapping system from OpenCV
 - Easy addition of new cameras with different scopes

Results

Conclusion

Advantages:

- → Increased confidence in true litter
- → Less false positives

Future Work:

- → More model training and differentiation of trash types
- → Brightness normalization and occlusion
- → Physical system
- → Improved resistance to shadows

RF-DETR confidence on identifying the plastic bag as trash

References

- Córdova, M., Pinto, A., Hellevik, C. C., Alaliyat, S. A.-A., Hameed, I. A., Pedrini, H., & Torres, R. d. S. (2022). Litter Detection with Deep Learning: A Comparative Study. Sensors, 22(2), 548. https://doi.org/10.3390/s22020548
- Mohammed Ghazal, Carlos Vázquez, and Aishy Amer. 2012. Real-time vandalism detection by monitoring object activities. Multimedia Tools Appl. 58, 3 (June 2012), 585–611. https://doi.org/10.1007/s11042-011-0751-z

Thank you!